
Lecture 30

Greedy: MST, Kruskal’s Algorithm

Source: Introduction to Algorithms, CLRS

Cut Connection of MST

Cut Connection of MST

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Lemma: Let an undirected, weighted and connected graph.G(V, E, w) Let be a subset of A E

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G

Let be a subset of A E

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G Let be any cut in so that cut set of does notC = (S, T) G C

Let be a subset of A E

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G Let be any cut in so that cut set of does notC = (S, T) G C

Let be a subset of A E

have any edge from .A

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G Let be any cut in so that cut set of does notC = (S, T) G C

Let be a subset of A E

have any edge from .A If is the least weight edge in the cut-set of ,e C

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G Let be any cut in so that cut set of does notC = (S, T) G C

Let be a subset of A E

have any edge from .A If is the least weight edge in the cut-set of ,e C then is also part A ∪ {e}

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G Let be any cut in so that cut set of does notC = (S, T) G C

Let be a subset of A E

have any edge from .A If is the least weight edge in the cut-set of ,e C
of some MST of .G

then is also part A ∪ {e}

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Proof:

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G Let be any cut in so that cut set of does notC = (S, T) G C

Let be a subset of A E

have any edge from .A If is the least weight edge in the cut-set of ,e C
of some MST of .G

then is also part A ∪ {e}

Let’s amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Proof:

Lemma: Let an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G Let be any cut in so that cut set of does notC = (S, T) G C

Let be a subset of A E

have any edge from .A If is the least weight edge in the cut-set of ,e C
of some MST of .G

then is also part A ∪ {e}

Similar to the previous proof.

Let’s amend the previous lemma so that it can help us in building an MST!

Kruskal’s Algorithm: Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Start with single node subtrees.

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

…

Kruskal’s Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

…

Kruskal’s Demonstration

Kruskal’s Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Demonstration

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2
u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Idea

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

• Start with many subtrees. Each vertex forms one subtree.|V |

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

• Start with many subtrees. Each vertex forms one subtree.|V |

• Start with edge set, .A = ∅

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

• Start with many subtrees. Each vertex forms one subtree.|V |

• Go over edges in ascending order of their weights.

• Start with edge set, .A = ∅

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

• Start with many subtrees. Each vertex forms one subtree.|V |

• Go over edges in ascending order of their weights.

• For an edge , if and belong to different subtrees:{u, v} u v

• Start with edge set, .A = ∅

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

• Start with many subtrees. Each vertex forms one subtree.|V |

• Go over edges in ascending order of their weights.

• For an edge , if and belong to different subtrees:{u, v} u v

• Add in .{u, v} A

• Start with edge set, .A = ∅

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

• Start with many subtrees. Each vertex forms one subtree.|V |

• Go over edges in ascending order of their weights.

• For an edge , if and belong to different subtrees:{u, v} u v

• Add in .{u, v} A

• Start with edge set, .A = ∅

• Join the different subtrees containing and via .u v {u, v}

Kruskal’s Algorithm

Kruskal’s Algorithm

 Kruskal : (G)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Θ(|V |)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Θ(|V |)

Θ(|E | log |E |)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Θ(|V |)

Θ(|E | log |E |)

O(|E | log |V |)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Θ(|V |)

Θ(|E | log |E |)

O(|E | log |V |)
(Disjoint-Set with

rank heuristic)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Time Complexity:

Θ(|V |)

Θ(|E | log |E |)

O(|E | log |V |)
(Disjoint-Set with

rank heuristic)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Time Complexity: O(|E | log |E |)

Θ(|V |)

Θ(|E | log |E |)

O(|E | log |V |)
(Disjoint-Set with

rank heuristic)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Time Complexity: O(|E | log |E |)

Θ(|V |)

Θ(|E | log |E |)

O(|E | log |V |)

 = O(|E | log |V |)

(Disjoint-Set with

rank heuristic)

Kruskal’s Algorithm

 Kruskal : (G)
 1. for each vertex // Starting with many subtreev ∈ V(G) |V |
 2. Make-Set(v)
 3. A = ∅
 4. sort the list of edges into monotonically increasing order by their weight
 5. for each edge taken from the sorted list in order{u, v}
 6. if Find-Set Find-Set // and are in different trees(u) ≠ (v) u v
 7. A = A ∪ {{u, v}}
 8. Union(u, v)
 9. return A

Time Complexity: O(|E | log |E |)

Θ(|V |)

Θ(|E | log |E |)

O(|E | log |V |)

 = O(|E | log |V |) ()∵ |E | ≤ |V |2

(Disjoint-Set with

rank heuristic)

Kruskal’s Algorithm: Correctness (Spanning)

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Consider the cut:

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Consider the cut:

V(T1)

V(T2)

V(T3)

V(Tk)

⋮

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Consider the cut:

V(T1)

V(T2)

V(T3)

V(Tk)

⋮
⋮

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Consider the cut:

V(T1)

V(T2)

V(T3)

V(Tk)

⋮
⋮

The edges of the cut set must have  
been considered in some iteration to 

be included in . A

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Consider the cut:

V(T1)

V(T2)

V(T3)

V(Tk)

⋮
⋮

The edges of the cut set must have  
been considered in some iteration to 

be included in . A

The first encountered edge, say , of the above cut-set must have been added in {u, v} A

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Consider the cut:

V(T1)

V(T2)

V(T3)

V(Tk)

⋮
⋮

The edges of the cut set must have  
been considered in some iteration to 

be included in . A

The first encountered edge, say , of the above cut-set must have been added in {u, v} A

u

v

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Consider the cut:

V(T1)

V(T2)

V(T3)

V(Tk)

⋮
⋮

The edges of the cut set must have  
been considered in some iteration to 

be included in . A

The first encountered edge, say , of the above cut-set must have been added in {u, v} A
putting and in the same subtree.u v

u

v

Kruskal’s Algorithm: Correctness (Spanning)
The algorithm starts with many subtrees.|V |

Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with disconnected subtrees, where .T1, T2, …, Tk k ≥ 2

Consider the cut:

V(T1)

V(T2)

V(T3)

V(Tk)

⋮
⋮

The edges of the cut set must have  
been considered in some iteration to 

be included in . A

The first encountered edge, say , of the above cut-set must have been added in {u, v} A
Contradiction! putting and in the same subtree.u v

u

v

Kruskal’s Algorithm: Correctness (Minimum)

Kruskal’s Algorithm: Correctness (Minimum)
Now, we will prove that any stage of the algorithm is part of some MST. A

Kruskal’s Algorithm: Correctness (Minimum)
Now, we will prove that any stage of the algorithm is part of some MST. A

Lemma: Let an undirected, weighted and connected graph. Let be a subset of

that is included in some MST of . Let be any cut in so that cut set of does not

have any edge from . If is the least weight edge in the cut-set of , then is also part

of some MST of .

G(V, E, w) A E
G C = (S, T) G C

A e C A ∪ {e}
G

Recall this lemma.

Kruskal’s Algorithm: Correctness (Minimum)
Now, we will prove that any stage of the algorithm is part of some MST. A

Kruskal’s Algorithm: Correctness (Minimum)
Now, we will prove that any stage of the algorithm is part of some MST. A

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Correctness (Minimum)
Now, we will prove that any stage of the algorithm is part of some MST. A

Suppose is part of some MST.A

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Kruskal’s Algorithm: Correctness (Minimum)
Now, we will prove that any stage of the algorithm is part of some MST. A

Suppose is part of some MST.A

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Edge is about be added to .{v, w} A

Kruskal’s Algorithm: Correctness (Minimum)
Now, we will prove that any stage of the algorithm is part of some MST. A

Suppose is part of some MST.A

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Can you think of a cut so that its cut-set does not have edges from and is least weight in it?A {v, w}

Edge is about be added to .{v, w} A

Kruskal’s Algorithm: Correctness (Minimum)
Now, we will prove that any stage of the algorithm is part of some MST. A

Suppose is part of some MST.A

u

x

v

y

w

z

s rq

4

8

11
7 6

1

8 7

2

4 14

9

10

2

Can you think of a cut so that its cut-set does not have edges from and is least weight in it?A {v, w}

S

T

Edge is about be added to .{v, w} A

