Lecture 30

Greedy: MST, Kruskal’s Algorithm

Source: Introduction to Algorithms, CLRS
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Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C = (5, 7) be any cut in G so that cut set of C does not

have any edge from A. If e is the least weight edge in the cut-set of C, then A U {e} is also part
of some MST of G.

Proof: Similar to the previous proof.
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Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

® Start with | V| many subtrees. Each vertex torms one subtree.

® Start with edge set, A = @&.

® (Go over edges in ascending order of their weights.

® Foranedge {u, v}, if uand v belong to different subtrees:
o Add {u,v}inA.

® Join the different subtrees containing u and v via {u, v}.
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Kruskal(G): /®( V1)
for each vertex v € V(G) // Starting with | V| many subtree
Make-Set(v)

A= /

sort the list of edges into monotonically increasing order by their weight
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Soge e as e e =
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Kruskal(G): /®( V1)

1. for each vertex v € V(G) // Starting with | V| many subtree

2. Make-Set(v)

s Ao | ouElog D
4. sort the list of edges into monotonically increasing order by their weight

5. for each edge {u, v} taken from the sorted list in order

6. if Find-Set(u#) # Find-Set(v) // u and v are in different trees

7. A=AU{{u,v}) T O(|E|log| V)
8. Union(u, v) (Disjoint-Set with
9. returnA rank heuristic )

Time Complexity: O(|E|log|E|) = O(|E|log|V|) (" |E| <|V|*)
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The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut: f'\
V(T,) The edges of the cut set must have

‘:‘>.. been considered in some iteration to
VI« MTs) be included in A.

1 .
\ V( Tk)
Vv

The first encountered edge, say {u, v}, of the above cut-set must have been added in A

putting u and v in the same subtree. Contradiction!
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Now, we will prove that any stage of the algorithm A is part of some MST.

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C' = (S, 7) be any cut in G so that cut set of ' does not
have any edge from A. If ¢ is the least weight edge in the cut-set of C, then A U {¢} is also part

of some MST of G. \

Recall this lemma.
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Now, we will prove that any stage of the algorithm A is part of some MST.

Suppose A is part of some MST. Edge {v,w} is about be added to A.
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Can you think of a cut so that its cut-set does not have edges from A and {v,w} is least weight in it?



