
Lecture 30

Greedy: MST, Kruskal’s Algorithm

Source: Introduction to Algorithms, CLRS
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Cut Connection of MST

Proof:

Lemma: Let  an undirected, weighted and connected graph.G(V, E, w)
that is included in some MST of .G Let  be any cut in  so that cut set of  does notC = (S, T) G C

Let  be a subset of A E

have any edge from .A If  is the least weight edge in the cut-set of ,e C
of some MST of .G

then  is also part A ∪ {e}

Similar to the previous proof.

Let’s amend the previous lemma so that it can help us in building an MST!
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Kruskal’s algorithm works in the following manner.

• Start with  many subtrees. Each vertex forms one subtree.|V |

• Go over edges in ascending order of their weights. 

• For an edge , if  and  belong to different subtrees:{u, v} u v

• Add  in .{u, v} A

• Start with edge set, .A = ∅

• Join the different subtrees containing  and  via .u v {u, v}
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 Kruskal :           (G)
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be included in . A
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Now, we will prove that any stage of the algorithm  is part of some MST. A

Lemma: Let  an undirected, weighted and connected graph. Let  be a subset of 

that is included in some MST of . Let  be any cut in  so that cut set of  does not

have any edge from . If  is the least weight edge in the cut-set of , then  is also part

of some MST of .

G(V, E, w) A E
G C = (S, T) G C

A e C A ∪ {e}
G

Recall this lemma.
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Can you think of a cut so that its cut-set does not have edges from  and  is least weight in it?A {v, w}

S

T
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