Lecture 30

Greedy: MST, Kruskal’s Algorithm

Source: Introduction to Algorithms, CLRS

Cut Connection of MST

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph.

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G.

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C = (5, 7) be any cut in G so that cut set of C does not

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C = (5, 7) be any cut in G so that cut set of C does not

have any edge from A.

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C = (5, 7) be any cut in G so that cut set of C does not

have any edge from A. If ¢ is the least weight edge in the cut-set of C,

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C = (5, 7) be any cut in G so that cut set of C does not

have any edge from A. If e is the least weight edge in the cut-set of C, then A U {e} is also part

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C = (5, 7) be any cut in G so that cut set of C does not

have any edge from A. If e is the least weight edge in the cut-set of C, then A U {e} is also part
of some MST of G.

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C = (5, 7) be any cut in G so that cut set of C does not

have any edge from A. If e is the least weight edge in the cut-set of C, then A U {e} is also part
of some MST of G.

Proof:

Cut Connection of MST

Let's amend the previous lemma so that it can help us in building an MST!

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C = (5, 7) be any cut in G so that cut set of C does not

have any edge from A. If e is the least weight edge in the cut-set of C, then A U {e} is also part
of some MST of G.

Proof: Similar to the previous proof.

Kruskal’s Algorithm: Demonstration

Kruskal’s Algorithm: Demonstration

Kruskal’s Algorithm: Demonstration

Kruskal’s Algorithm: Demonstration

Start with single node subtrees.

Kruskal’s Algorithm: Demonstration

Kruskal’s Algorithm: Demonstration

Kruskal’s Algorithm: Demonstration

Kruskal’s Algorithm: Demonstration

Kruskal’s Algorithm: Demonstration

e Demonstration

Kruskal’s Algorithm

e Demonstration

Kruskal’s Algorithm

e Demonstration

Kruskal’s Algorithm

e Demonstration

Kruskal’s Algorithm

e Demonstration

Kruskal’s Algorithm

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Demonstration

Kruskal’s Algorithm: Idea

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

® Start with | V| many subtrees. Each vertex torms one subtree.

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

® Start with | V| many subtrees. Each vertex torms one subtree.

® Start with edge set, A = @&.

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

® Start with | V| many subtrees. Each vertex torms one subtree.

® Start with edge set, A = @&.

® (Go over edges in ascending order of their weights.

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

® Start with | V| many subtrees. Each vertex torms one subtree.

® Start with edge set, A = @&.

® (Go over edges in ascending order of their weights.

® Foranedge {u, v}, if uand v belong to different subtrees:

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

® Start with | V| many subtrees. Each vertex torms one subtree.

® Start with edge set, A = @&.

® (Go over edges in ascending order of their weights.

® Foranedge {u, v}, if uand v belong to different subtrees:

o Add {u,v}inA.

Kruskal’s Algorithm: Idea

Kruskal’s algorithm works in the following manner.

® Start with | V| many subtrees. Each vertex torms one subtree.

® Start with edge set, A = @&.

® (Go over edges in ascending order of their weights.

® Foranedge {u, v}, if uand v belong to different subtrees:
o Add {u,v}inA.

® Join the different subtrees containing u and v via {u, v}.

Kruskal’s Algorithm

Kruskal’s Algorithm

Kruskal(G):

Kruskal’s Algorithm

Kruskal(G):
1. for each vertex v € V(G) // Starting with | V| many subtree

Kruskal’s Algorithm

Kruskal(G):

1. for each vertex v € V(G) // Starting with | V| many subtree
2. Make-Set(v)

Kruskal’s Algorithm

Kruskal(G):

1. for each vertex v € V(G) // Starting with | V| many subtree
2. Make-Set(v)

3. A=0Q

Kruskal’s Algorithm

Kruskal(G):

1. for each vertex v € V(G) // Starting with | V| many subtree

2 Make-Set(v)

3. A=

4. sort the list of edges into monotonically increasing order by their weight

Kruskal’s Algorithm

Kruskal(G):

1. for each vertex v € V(G) // Starting with | V| many subtree

2 Make-Set(v)

3. A=0

4. sort the list of edges into monotonically increasing order by their weight
5

for each edge {u, v} taken from the sorted list in order

Kruskal’s Algorithm

Kruskal(G):

1. for each vertex v € V(G) // Starting with | V| many subtree

2. Make-Set(v)

3. A=

4. sort the list of edges into monotonically increasing order by their weight
5. for each edge {u, v} taken from the sorted list in order

6. if Find-Set(u#) # Find-Set(v) // u and v are in different trees

Kruskal’s Algorithm

Kruskal(G):

1. for each vertex v € V(G) // Starting with | V| many subtree

2. Make-Set(v)

3. A=

4. sort the list of edges into monotonically increasing order by their weight
5. for each edge {u, v} taken from the sorted list in order

6. if Find-Set(u#) # Find-Set(v) // u and v are in different trees

7. A=AU {{u,v}}

Kruskal’s Algorithm

Kruskal(G):

1. for each vertex v € V(G) // Starting with | V| many subtree

2. Make-Set(v)

3. A=

4. sort the list of edges into monotonically increasing order by their weight
5. for each edge {u, v} taken from the sorted list in order

6. if Find-Set(u#) # Find-Set(v) // u and v are in different trees

7. A=AU {{u,v}}

8. Union(u, v)

Kruskal’s Algorithm

Kruskal(G):

for each vertex v € V(G) // Starting with | V| many subtree
Make-Set(v)

A=0Q

sort the list of edges into monotonically increasing order by their weight

for each edge {u, v} taken from the sorted list in order
if Find-Set(u) # Find-Set(v) // u and v are in different trees
A=AU{{u,v}}

Union(u, v)

Soge e as e e =

return A

Kruskal’s Algorithm

Kruskal(G): /®(V1)
for each vertex v € V(G) // Starting with | V| many subtree
Make-Set(v)
A=0Q

sort the list of edges into monotonically increasing order by their weight

for each edge {u, v} taken from the sorted list in order
if Find-Set(u) # Find-Set(v) // u and v are in different trees
A=AU{{u,v}}

Union(u, v)

Soge e as e e =

return A

Kruskal’s Algorithm

Kruskal(G): /®(V1)
for each vertex v € V(G) // Starting with | V| many subtree
Make-Set(v)

A= /

sort the list of edges into monotonically increasing order by their weight

O(|L|log|E])

for each edge {u, v} taken from the sorted list in order
if Find-Set(u) # Find-Set(v) // u and v are in different trees
A=AU{{u,v}}

Union(u, v)

Soge e as e e =

return A

Kruskal’s Algorithm

Kruskal(G): /®(V1)
for each vertex v € V(G) // Starting with | V| many subtree
Make-Set(v)

A= /

sort the list of edges into monotonically increasing order by their weight

O(|L|log|E])

for each edge {u, v} taken from the sorted list in order
if Find-Set(u) # Find-Set(v) // u and v are in different trees
A=AU {{u,v}} \0(|E\log\V\)

Union(u, v)

Soge e as e e =

return A

Kruskal’s Algorithm

Kruskal(G): /®(V1)
for each vertex v € V(G) // Starting with | V| many subtree
Make-Set(v)

A= /

sort the list of edges into monotonically increasing order by their weight

O(|L|log|E])

for each edge {u, v} taken from the sorted list in order

Soge e as e e =

if Find-Set(u) # Find-Set(v) // u and v are in different trees
A=AU {{u,v}} \0(|E\log\V\)
Union(u, v) (Disjoint-Set with
return A rank heuristic)

Kruskal’s Algorithm

Kruskal(G): /®(V1)

1. for each vertex v € V(G) // Starting with | V| many subtree

2. Make-Set(v)

s Ao | ouElog D
4. sort the list of edges into monotonically increasing order by their weight

5. for each edge {u, v} taken from the sorted list in order

6. if Find-Set(u#) # Find-Set(v) // u and v are in different trees

7. A=AU{{u,v}) T O(|E|log| V)
8. Union(u, v) (Disjoint-Set with
9. returnA rank heuristic)

Time Complexity:

Kruskal’s Algorithm

Kruskal(G): /®(V1)

1. for each vertex v € V(G) // Starting with | V| many subtree

2. Make-Set(v)

s Ao | ouElog D
4. sort the list of edges into monotonically increasing order by their weight

5. for each edge {u, v} taken from the sorted list in order

6. if Find-Set(u#) # Find-Set(v) // u and v are in different trees

7. A=AU{{u,v}) T O(|E|log| V)
8. Union(u, v) (Disjoint-Set with
9. returnA rank heuristic)

Time Complexity: O(|E|log|E]|)

Kruskal’s Algorithm

Kruskal(G): /®(V1)

1. for each vertex v € V(G) // Starting with | V| many subtree

2. Make-Set(v)

s Ao | ouElog D
4. sort the list of edges into monotonically increasing order by their weight

5. for each edge {u, v} taken from the sorted list in order

6. if Find-Set(u#) # Find-Set(v) // u and v are in different trees

7. A=AU{{u,v}) T O(|E|log| V)
8. Union(u, v) (Disjoint-Set with
9. returnA rank heuristic)

Time Complexity: O(|E|log|E|) = O(|E|log]|V])

Kruskal’s Algorithm

Kruskal(G): /®(V1)

1. for each vertex v € V(G) // Starting with | V| many subtree

2. Make-Set(v)

s Ao | ouElog D
4. sort the list of edges into monotonically increasing order by their weight

5. for each edge {u, v} taken from the sorted list in order

6. if Find-Set(u#) # Find-Set(v) // u and v are in different trees

7. A=AU{{u,v}) T O(|E|log| V)
8. Union(u, v) (Disjoint-Set with
9. returnA rank heuristic)

Time Complexity: O(|E|log|E|) = O(|E|log|V|) (" |E| <|V|*)

Kruskal’s Algorithm: Correctness (Spanning)

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.

Why should the algorithm terminate with just one tree?

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut:

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut:

V(T5)

i V(T

V(T

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut:

V(T5)
-~———O

/ V(T)

V(T}) ‘

.\o

\ V(Tk)

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut: f‘\
V(T,) The edges of the cut set must have

-~——9

/ been considered in some iteration to
. V(T . :
V(T)) : (.3) be included in A.

.\o

\ V(Tk)

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut: f‘\
V(T,) The edges of the cut set must have

-~——9

/ been considered in some iteration to
. V(T . :
V(T)) : (.3) be included in A.

.\o

\ V(Tk)

The first encountered edge, say {u, v}, of the above cut-set must have been added in A

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut: f‘\
V(T,) The edges of the cut set must have

‘:‘>.. been considered in some iteration to
VI« MTs) be included in A.

1 .
\ V(Tk)
Vv

The first encountered edge, say {u, v}, of the above cut-set must have been added in A

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut: f‘\
V(T,) The edges of the cut set must have

‘:‘>.. been considered in some iteration to
VI« MTs) be included in A.

1 .
\ V(Tk)
Vv

The first encountered edge, say {u, v}, of the above cut-set must have been added in A

putting u and v in the same subtree.

Kruskal’s Algorithm: Correctness (Spanning)

The algorithm starts with | V| many subtrees.
Why should the algorithm terminate with just one tree?

Suppose algorithm terminates with 7', 75, ..., T}, disconnected subtrees, where k > 2.

Consider the cut: f'\
V(T,) The edges of the cut set must have

‘:‘>.. been considered in some iteration to
VI« MTs) be included in A.

1 .
\ V(Tk)
Vv

The first encountered edge, say {u, v}, of the above cut-set must have been added in A

putting u and v in the same subtree. Contradiction!

Kruskal’s Algorithm: Correctness (Minimum)

Kruskal’s Algorithm: Correctness (Minimum)

Now, we will prove that any stage of the algorithm A is part of some MST.

Kruskal’s Algorithm: Correctness (Minimum)

Now, we will prove that any stage of the algorithm A is part of some MST.

Lemma: Let G(V, £, w) an undirected, weighted and connected graph. Let A be a subset of £
that is included in some MST of G. Let C' = (S, 7) be any cut in G so that cut set of ' does not
have any edge from A. If ¢ is the least weight edge in the cut-set of C, then A U {¢} is also part

of some MST of G. \

Recall this lemma.

Kruskal’s Algorithm: Correctness (Minimum)

Now, we will prove that any stage of the algorithm A is part of some MST.

Kruskal’s Algorithm: Correctness (Minimum)

Now, we will prove that any stage of the algorithm A is part of some MST.

Kruskal’s Algorithm: Correctness (Minimum)

Now, we will prove that any stage of the algorithm A is part of some MST.

Suppose A is part of some MST.

Kruskal’s Algorithm: Correctness (Minimum)

Now, we will prove that any stage of the algorithm A is part of some MST.

Suppose A is part of some MST. Edge {v,w} is about be added to A.

Kruskal’s Algorithm: Correctness (Minimum)

Now, we will prove that any stage of the algorithm A is part of some MST.

Suppose A is part of some MST. Edge {v,w} is about be added to A.

Can you think of a cut so that its cut-set does not have edges from A and {v,w} is least weight in it?

Kruskal’s Algorithm: Correctness (Minimum)

Now, we will prove that any stage of the algorithm A is part of some MST.

Suppose A is part of some MST. Edge {v,w} is about be added to A.

YAoNNAIe 9
A N\

Can you think of a cut so that its cut-set does not have edges from A and {v,w} is least weight in it?

